Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

New Insights into the Unique Operation of Small Pore Cu-Zeolite SCR Catalyst: Overlapping NH3 Desorption and Oxidation Characteristics for Minimizing Undesired Products

2014-04-01
2014-01-1542
An operational challenge associated with SCR catalysts is the NH3 slip control, particularly for commercial small pore Cu-zeolite formulations as a consequence of their significant ammonia storage capacity. The desorption of NH3 during increasing temperature transients is one example of this challenge. Ammonia slipping from SCR catalyst typically passes through a platinum based ammonia oxidation catalyst (AMOx), leading to the formation of the undesired byproducts NOx and N2O. We have discovered a distinctive characteristic, an overlapping NH3 desorption and oxidation, in a state-of-the-art Cu-zeolite SCR catalyst that can minimize NH3 slip during temperature transients encountered in real-world operation of a vehicle.
Technical Paper

Mode I Fracture Testing of Adhesively Bonded Joints

1999-03-01
1999-01-1253
Several standard methods exist for testing composites, metals and plastics in Mode I fracture. However, these standard test methods have limitations that disqualify them as candidates for testing certain automotive materials. In order to conduct successful fracture toughness tests with these automotive materials, a modified double cantilever beam testing geometry and associated new procedure have been developed. Both the test procedure and the data analysis have been fully documented in a draft standard. Representative SRIM composite, e-coat steel and epoxy were selected to develop and validate the testing procedure.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Metal Compression Forming - A New Process for Structural Aluminum Alloy Castings

1998-08-11
982107
Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process. The paper describes the casting process development involved in the production of an aluminum A357 alloy motor mount bracket, including the use of a filling and solidification model to design the gating and determine process parameters. Tensile properties of the component are presented and correlated with those of forged components.
Technical Paper

Magnetically Oriented Core Lamination Manufactured from Non-Oriented Electrical Steel Sheets

2024-04-09
2024-01-2239
Soft magnetic cores of electric motors and generators are normally manufactured by stamping individual circular laminates from non-oriented electrical steel (NOES) sheets and stacking them layer by layer to reach the required height. The traditional lamination method can only achieve the average performance of the NOES since the magnetization is in all the directions of the sheet plane. Although NOES is ideal to have isotropic magnetic properties in all the directions of the sheet plane, commercially available electrical steel sheets always show apparent anisotropy in the rotating magnetization directions lying in the sheet plane. The anisotropy in magnetic properties not only causes fluctuations in the rotating magnetic field, but also leads to oscillations in electromagnetic torque, and thus needs to be minimized.
Technical Paper

Magnesium Matrix Composites for Elevated Temperature Applications

2007-04-16
2007-01-1028
Recently, there have been substantial activities focusing on the development of magnesium alloys for high temperature applications (>150°C) through alloying additions, in order to expand its use. However, a simple route of improving the elevated temperature property of a magnesium alloy through the composite route has been overlooked. In particularly, the possibility of reinforcing a magnesium component through selective reinforcement has not been widely explored. In this paper, a viable technique of fabricating magnesium matrix composites through squeeze casting is provided. In addition, the novel approach of making preforms and the manner which they can be selectively reinforced into magnesium components is introduced. Finally, results on some of the key properties of magnesium composites developed by this technique along with the characterization results are presented.
Technical Paper

Low Temperature Urea Decomposition and SCR Performance

2005-04-11
2005-01-1858
Urea-SCR systems are potentially a highly-effective means of NOX reduction for light-duty diesel vehicles. However, use of urea-SCR technologies at low temperatures presents unique technical challenges. This study was undertaken to provide more knowledge about low temperature urea decomposition and the resulting effects on SCR performance. Data are presented for experiments using two SCR catalysts of differing size with a light-duty diesel engine. Analyses of the NOX reduction efficiency, NH3 storage phenomena, and unregulated emissions are shown. Over production of NO2 by the oxidation catalyst is demonstrated to be problematic at 25,000 hr-1 space velocity for a range of temperatures. This leads to production of N2O by both SCR catalysts that is higher when urea is injected than when NH3 is injected.
Technical Paper

Low Density and Temperature Tolerant Alloys for Automotive Applications

2017-03-28
2017-01-1666
Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
Journal Article

Limitations and Recommended Practice In the Use of Compression and Leak-Down Tests to Monitor Gradual Engine Degradation

2011-12-06
2011-01-2427
Compression and leak-down tests are frequently used to identify and diagnose failed engine power cylinders. It is also often desirable in research and testing programs to use these tests to monitor incremental changes in cylinder leakage. This paper investigates whether these tests are adequate in their present form to monitor incremental changes in cylinder leakage. Results are presented from two vehicle fleets at two test sites. Compression and leak-down tests were conducted on these fleets periodically during a mileage accumulation study. The results were used to establish the variability inherent in the compression and leak-down test processes. Comparisons between the results at the initial mileage test for the study vehicles with those at the final mileage test are shown to be largely within the uncertainty established for repeat assessments.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

2010-10-25
2010-01-2209
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

2009-11-02
2009-01-2741
Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

In Situ Measurement of Fuel Absorption into the Cylinder Wall Oil Film During Engine Cold Start

1998-02-01
981054
The absorption of unburned fuel into the engine cylinder wall oil film has been identified as a source of hydrocarbon (HC) emissions from spark-ignited (SI)engines. While significant work has been done under steady-state operating conditions to quantify the contribution of this mechanism to overall unburned hydrocarbon emissions, little work has focused on cold starting conditions and in situ measurement of the fuel / oil film interaction. The work reported here shows how laser-induced fluorescence (LIF) spectroscopy can be used to make in situ measurements of the absorption of fuel into the cylinder wall oil film of a single cylinder engine. Measurements were made at two points in the engine cycle under cold start conditions. Results indicate that fuel concentration in the oil film reached a maximum of fifty percent (50%) during cold start operation, though fuel was present in the oil film throughout the engine cycle.
Technical Paper

In Situ Laser Induced Florescence Measurements of Fuel Dilution from Low Load to Stochastic Pre Ignition Prone Conditions

2021-04-06
2021-01-0489
This work employs a novel laser induced fluorescence (LIF) diagnostic to measure fuel dilution in a running single cylinder research engine operated at stochastic pre ignition (SPI) and non-SPI prone conditions. Measurements of LIF based fuel dilution are quantified over a range of engine loads and fuel injection timings for two fuels. The in situ LIF measurements of fuel/lubricant interactions illustrate regions of increased fuel dilution from fuel-wall interactions and is believed to be a fundamental underpinning to generating top ring zone liquid conditions conducive to SPI. A novel level of dye doped in the fuel, between 50 to 500 ppm was used as the fluorescence source, at engine operating speed of 2000r/min from 5 to 18 bar of IMEPg injection timings was swept for two fuels of varying volatility.
Technical Paper

Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

2009-11-02
2009-01-2709
Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOx and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOx trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOx emissions downstream of the LNT.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

2015-04-14
2015-01-1022
In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

High-Volume, Low-Cost Precursors for Carbon Fiber Production

2002-06-03
2002-01-1907
Carbon fiber composite use in automobiles and light trucks could dramatically reduce energy use and engine-out emissions. However, worldwide capacity of 28,000 tonnes per year of carbon fiber from polyacrylonitrile (PAN) and petroleum pitch could support limited automotive use. Production of high-volume, industrial-grade fiber from renewable and recycled polymers (lignin, recycled plastics, regenerated cellulosics) could meet automotive demand. Profiles of material volumes, carbon content, and melting points indicate several attractive candidates for production melt-spun carbon fiber feedstocks. Effects on the carbon fiber production cycle and its integration into automotive production are discussed.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Technical Paper

Graphitic Foam Thermal Management Materials for Electronic Packaging

2000-04-02
2000-01-1576
The goal of this program is to utilize the recently developed high conductivity carbon foam for thermal management in electronics (heat exchangers and heat sinks). The technique used to fabricate the foam produces mesophase pitch-based graphitic foam with extremely high thermal conductivity and an open-celled structure. The thermal properties of the foam have been increased by 79% from 106 to 187 W/m·K at a density of 0.56 g/cm3 through process optimization. It has been demonstrated that when the high-thermal-conductivity graphitic foam is utilized as the core material for the heat exchanger, the effective heat transfer can be increased by at least an order of magnitude compared to traditional designs. A once-through-foam core/aluminum-plated heat exchanger has been fabricated for testing in electronic modules for power inverters.
Technical Paper

Fuel-Lubricant Interactions on the Propensity for Stochastic Pre-Ignition

2019-09-09
2019-24-0103
This work explores the impact of the interaction of lubricant and fuel properties on the propensity for stochastic pre-ignition (SPI). Findings are based on statistically significant changes in SPI tendency and magnitude, as determined by measurements of cylinder pressure. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical and chemical effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement, and most importantly engine load, lubricant detergent effects could be observed even at reduced loads This suggests that there is a thermal effect associated with the higher load operation.
X